

NORTH FLORIDA

Intersection Safety and Operational Improvements

SR 21 at SR 100 in Keystone Heights

Contents

Section 1. Introduction 1-1
1.1 Purpose 1-2
1.2 Objective 1-2
1.3 Background 1-2
1.4 Study Location 1-2
Section 2. Existing Conditions 2-1
2.1 Intersection Characteristics 2-2
2.2 Intersection Geometry 2-4
2.3 Intersection Striping 2-6
2.4 Context Classification 2-7
2.5 Right of Way/Parcel Boundaries 2-8
2.6 Existing Land Use 2-10
2.7 Previous Studies 2-12
Section 3. Traffic Analysis 3-1
3.1 Data Collection 3-2
3.2 Existing Traffic Conditions 3-4
3.3 Traffic Forecasting 3-5
3.4 Intersection Level of Service Analysis 3-8
Section 4. Safety Evaluation 4-1
4.1 Crash Evaluation 4-2
Section 5. Proposed Improvements 5-1
5.1 Proposed Improvements 5-2
5.2 Pavement Markings 5-3
5.3 Signal Improvements 5-4
5.4 Intersection Design 5-5
5.5 Turn Lane and Parking Area Concept. 5-8
5.6 Public Parking 5-14
5.7 Access Management 5-16
Section 6. Conclusion 6-1
Appendix A: Traffic Data A-1
Appendix B: Synchro Analysis B-1
Appendix C: Autoturn Evaluation C-1

Tables

Table 3-1. Historical Traffic Counts 3-5
Table 3-2. Regression Analysis 3-6
Table 3-3. Population Projections 3-6
Table 3-4. Growth Rate Summary 3-7
Table 3-5. Existing and Future No Build Intersection Performance 3-9
Table 3-6. Existing and Future Build Intersection Performance 3-10
Table 6-1. Summary of Recomended Improvements 6-3

Figures

Figure 2-1. Existing Intersection Configuration... 2-3
Figure 2-2. Intersection Geometry 2-5
Figure 2-3. FDOT Context Classification Guide Description 2-7
Figure 2-4. Existing Parcel and Right of Way Boundaries 2-9
Figure 2-5. Existing Land Use 2-11
Figure 3-1. Existing Turning Movement Counts 3-4
Figure 3-2. Level of Service Grades A through F 3-8
Figure 4-1. Crashes by Type 4-2
Figure 4-2. Crashes by Year. 4-3
Figure 4-3. Crashes by Day of Week 4-3
Figure 4-4. Crashes by Lighting Conditions 4-4
Figure 4-5. Crashes by Time-of-Day 4-4
Figure 4-6. Crashes by Roadway Condition 4-5
Figure 5-1. SR 21/SR 100 Concept Plan 5-7
Figure 5-2. Right of Way and Parcel Boundaries... 5 5-9
Figure 5-3. Area Needed for Parking Area, Turn Lane and Open Space. 5-10

1.1 Purpose

Recognizing that the intersection of SR 21 and SR 100 serves as a gateway into the City of Keystone Heights, the North Florida Transportation Planning Organization (TPO) in conjunction with the City of Keystone Heights initiated a planning study to evaluate the performance of the intersection and recommend improvements that enhance performance and safety for all modes of transportation including vehicles, bicyclists, and pedestrians.

1.2 Objective

The objective of this study is to identify, evaluate, and develop operational and safety improvements to improve the functionality of the intersection. Elements evaluated as part of this study included:

- Optimization of existing signal timings
- Enhanced pavement markings
- Addition/modification of turn lanes
- Enhanced pedestrian crossings

1.3 Background

The SR 21/SR 100 Intersection Study was initiated by the City of Keystone Heights and funded by the North Florida TPO as a transportation planning study that investigates the operational performance of the SR 21/SR100 intersection.

1.4 Study Location

The study intersection is located within the City of Keystone Heights in Clay County, Florida. This intersection provides a northern entrance, or gateway, into downtown Keystone Heights on SR 21.

SECTION 2. Existing Conditions

2.1 Intersection Characteristics

SR 21 near SR 100 is a two-lane undivided urban minor arterial with a posted speed limit of 30 MPH approaching the SR 100 intersection. This portion of SR 21 runs primarily north and south and has an access management classification of Access Class 06. SR 21 has 12-foot trave lanes and curb and gutter. There are sidewalks along each approach to the intersection. There are no bike lanes or paved shoulders along either roadway. See Figure 2-1 for an aerial of the intersection.

The intersection is signed, striped, and signalized with the following geometry:

- Northbound SR 21: One left-turn lane and one through/right-turn lane
- Southbound SR 21: One left-turn lane, one through lane, and one right-turn lane
- Eastbound SR 100: One left-turn lane and one through/right-turn lane
- Westbound SR 100: One left-turn lane and one through/right-turn lane

2.2 Intersection Geometry

SR 21 at SR 100 is skewed intersection, further defined by lane striping for SB right/through and SB left turn movements. The WB SR 100 to NB SR 21 traffic must make an immediate "right turn only" into the Walgreens parking lot, or merge left to the NB through lane, after turning. The decision point directly after the WB to NB turn is abrupt.

The acute angle between NB SR 21 to EB SR 100 is 46 degrees, making all right turns difficult for trucks without departing from the designated striped lanes. Figure 2-2 indicates the intersection approach angles.

Figure 2-2. Intersection Geometry

2.3 Intersection Striping

Intersection lane markings have been recently repainted and include high emphasis crosswalks at all approaches as well as new markings to more clearly delineate the SR 21 northbound right turn only lane into the Walgreens on the northeast corner of the intersection. The on-street parking pavement markings have also been refreshed on SR 21 south of the intersection. Crosswalks in all four directions are longer than optimum for comfortable walk times, with the two with the sharpest skew being the longest.

2.4 Context Classification

SR 21 and SR 100 both have a context classification of Rural Town (C2T). According to the FDOT Context Classification Guide, the rural town classification exhibits small concentrations of development areas immediately surrounded by rural and natural areas. This classification includes many historic towns. SR 21, south of the intersection through the small business district, acts as a gateway to the town center. Figure 2-3 illustrates this classification.

Figure 2-3. FDOT Context Classification Guide Description

2.5 Right of Way/Parcel Boundaries

Parcel boundaries were obtained from the Clay County Property Appraiser. This parcel data was used to assume general right-of-way (ROW) boundaries adjacent to both SR 21 and SR 100. Figure 2-4 illustrates the existing ROW and parcel boundaries adjacent to the intersection.

Figure 2-4. Existing Parcel and Right of Way Boundaries

2.6 Existing Land Use

Existing land use adjacent to the SR 21/SR 100 intersection was determined using the Generalized Land Use Derived from 2021 Florida Parcels dataset from the University of Florida's GeoPlan Center. The dataset was created for FDOT and generalizes 99 available land uses into 15 land use classifications. As displayed in Figure 2-5, predominant land uses adjacent to the intersection are commercial and public uses. Two large residential developments are scheduled to be constructed within the next few years. This growth was accounted for in the growth rate used for the traffic analysis in the near-term years.

Figure 2-5. Existing Land Use

District Two Traffic Operations

2.7 Previous Studies

The FDOT District 2 Traffic Operations Office completed an intersection review of the SR 21 at SR 100 intersection in January 2020 (Section No. 71110000 , MP 6.245 , Clay County) with the principal purpose of determining traffic turning movements, and specifically north bound SR 21 right turns to east bound SR 100. The District received a request from an individual (unidentified in the report) to study the turning movements. The intersection review report also identified potential new development in the area but with no identification as to where or when this will occur.

The observed turning movement data was provided in Table 1 of the District's report: SR 21 Northbound Right-Turn Volumes varied from 16 to 30 (the peak during 3:00 PM to 4:00 PM).

A field review was performed on December 3, 2019, from 8:45 AM to 9:45 AM to document existing conditions during which very few NB right turns were observed. The District's report did state, "There was evidence that the northbound right-turn movement has off-tracked onto the curb, but no evidence of prolonged wear (cracked curb, sidewalk, etc.)." Given that few NB right turns are made from SR 21 to SR 100, local knowledge of difficult turning movement may mean that local drivers avoid the turns.

The District's report Conclusions and Recommendations section (2020) provides the following: "Based on the field review, crash analysis, and right-turn lane evaluation, a right-turn lane is not recommended at this time. The field review and office review found that the existing volumes of northbound right-turns did not meet or exceed the recommended thresholds outlined in the FDOT Driveway Information Guide. (The threshold cited as justification for a right turn lane for a $30-\mathrm{mph}$ two lane roadway is 80 right-turning vehicles per hour, and the maximum number of right turns at this intersection during the twelve hours observed was 30.) Additionally, there is no crash history of northbound rear-ends that was attributed to vehicles slowing to turn right. No other operational improvements are recommended."

FDOT has recently completed a project that involved painting high emphasis crosswalks at the intersection as well as new striping for parking on SR 21 south of SR 100

SEction 3. Traffic Analysis

3.1 Data Collection

3.1.1. Tube Counts

Twenty-four-hour tube counts were collected on SR 21 and SR 100 over a three-day period (October 25-27, 2022) at four locations. These locations were:

- SR 21 north of SR 100
- SR 21 south of SR 100
- SR 100 east of SR 21
- SR 100 west of SR 21

3.1.2. Turning Movement Counts

Turning movement counts (TMC) were collected for eight hours on Thursday, October 27, 2022. The counts captured the AM and PM peak periods at the SR 100 at SR 21 intersection. The TMCs included vehicle classification between passenger vehicles, heavy vehicles, pedestrians, and bicyclists.

The turning movement counts were not adjusted by a seasonal adjustment factor as the seasonal adjustment factor from the 2021 Clay County Season Factor Report is less than 1.00 based on the time of year the counts were performed, indicating that the counts were collected during peak season conditions

3.2 Existing Traffic Conditions

Utilizing traffic data collected as part of this study, the SR 21/SR 100 intersection and the surrounding approaches were evaluated to determine existing traffic characteristics. Figure 3-1 illustrates existing turning movement counts for the intersection.

Figure 3-1. Existing Turning Movement Counts

3.3 Traffic Forecasting

3.3.1. Historical Traffic Counts

A ten-year historical trends analysis was performed using traffic count data for the most recently available AADT from FDOT's Florida Traffic Online database. Four locations were available within the study area and are listed below. Table 3-1 provides the AADT estimate between 2012 with 2021.

Table 3-1. Historical Traffic Counts											
Count Location	Count ID	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
SR 100 - West of SR 19	710168	9,900	10,500	10,500	11,000	11,000	12,000	12,000	11,000	12,000	12,000
SR 100 - East of SR 19	710110	10,600	11,400	11,200	11,500	11,700	11,000	12,100	11,900	11,300	12,800
SR 19 - North of SR 100	710164	9,500	10,000	9,700	10,000	10,000	10,500	10,500	11,500	10,000	11,500
SR 19 - South of SR 100	710014	5,700	6,000	5,900	6,000	6,500	6,800	7,200	7,000	7,200	7,200

3.3.4. Growth Rate Summary

The recommended growth rate was selected by comparing all of the forecasts and accounting for the variability in the different methods (Table 3-4). The three methods of growth analytics are provided for comparison in the table below. Based on the variability a suggested annual growth rate of 1.5% is proposed for the study area.

3.3.5. Future Turning Movement Counts

The 1.5\% annual growth rate was applied to the existing turning movement counts to determine future year 2050 turning movements.
The design year (2050) traffic utilized the 1.5% annual growth rate except for the first two years which utilized a 2% growth rate due to multiple residential developments being constructed in the area during the next two years. Additionally, a seven (7) second leading pedestrian interval was modeled as part of the signal timings in both the existing and future conditions.

Free flow operations. Vehicles can move freely within the traffic stream.

D) Reasonably free flow operations. The ability to move within the traffic stream is only slightly restricted.

Flow with speeds at or near free flow. Freedom to maneuver within the traffic stream is noticeably restricted and lane changes require more effort on the part of the driver.

The facility has almost reached its capacity. Operations are unstable because there are virtually no gaps in the traffic stream. There is little or no room to move.

3.4 Intersection Level of Service Analysis

An operational analysis of the intersection was performed for existing traffic with current geometry and for a design year of 2050 with No-Build conditions. The intersection traffic analysis was conducted using Synchro (version 11) traffic software, which uses the HCM methodology to determine intersection delay and level of service (LOS). LOS is a measurement of congestion determined by the number of vehicles on a roadway in relation to the capacity of the roadway. LOS standards assign a grade of LOS A (least congestion) to LOS F (most congestion) to a roadway facility (see Figure 3-2).

3.4.1. 2022 Existing and 2050 No Build Intersection Performance Results

The results of the 2022 existing traffic analysis indicate that the overall intersection currently operates within target LOS (LOS D or better) in both the AM and PM peak hour for existing and future volumes. A slight improvement in northbound and southbound approach delays for the AM peak hour can be attributed to an increase in green time utilization for those approaches with the 2050 volumes. Signal timings for future year signalized intersections were optimized using Synchro's optimization tool to achieve comparable intersection operating conditions and traffic progression to regular Transportation Systems Management and Operations (TSM\&O) signal retiming maintenance. Table 3.5 summarizes the existing and future no build intersection performance results.
An operational analysis of the project's intersection was performed for existing traffic with current geometry and for a design year of 2050 with No-Build conditions. The intersection traffic analysis was conducted using Synchro (version 11) traffic software, which uses the HCM methodology to determine intersection delay and level of service (LOS) as shown in Table 3-5.

Intersection	Year	Table 3-5. Existing and Future No Build Intersection Performance																			
		AM										PM									
		EB		WB		NB		SB		Overall		EB		WB		NB		SB		Overall	
$\begin{aligned} & \text { SR } 100 \text { and } \\ & \text { SR } 21 \end{aligned}$	2022	15.4	(B)	16.9	(B)	57.6	(E)	59.2	(E)	34.7	(C)	20.8	(C)	26.6	(C)	55.3	(E)	47.7	(D)	34.7	(C)
	2050	22.4	(C)	25.4	(C)	54.6	(D)	63.2	(E)	36.9	(C)	60.8	(E)	62.6	(E)	56.4	(E)	47.8	(D)	56.9	(E)
											5			W8							

3.4.2. 2022 and 2050 Build Intersection Performance Results

The Build scenario of this intersection has the same existing geometry with the exception of an additional northbound channelized right-turn lane. The northbound approach for the build scenario thus has a left turn lane, a through lane, and a channelized right turn lane.

The results of the 2050 Build traffic analysis indicate an improvement in the overall intersection which operates within target LOS (LOS D or better) in both the AM and PM peak hour for existing and future volumes. The northbound approach also experiences a noticeable improvement and operates within target LOS (LOS D or better) for both Build scenario peak hours and volumes. Table 3-6 summarizes the existing and future build intersection performance results.

Table 3-6. Existing and Future Build Intersection Performance																					
Intersection	Year	AM										PM									
		EB		WB		NB		SB		Overall		EB		WB		NB		SB		Overall	
$\begin{aligned} & \text { SR } 100 \text { and } \\ & \text { SR } 21 \end{aligned}$	2022	15.4	(B)	16.9	(B)	54.6	(D)	59.2	(E)	34.2	(C)	19.8	(B)	25.4	(C)	53.9	(D)	49.1	(D)	34.2	(C)
	2050	22.2	(C)	25.1	(C)	51.0	(D)	53.7	(D)	36.4	(D)	56.3	(E)	59.2	(E)	48.7	(D)	47.5	(D)	53.4	(D)

- 2

(20)

4.1 Crash Evaluation

Existing crash data was obtained from the Signal 4 Analytics (S4) database for the five-year period from 2018 to 2022. The S4 database was developed by the GeoPlan Center at the University of Florida using crash records provided by the Florida Department of Highway Safety and Motor Vehicles (DHSMV). A review of the crash data indicated a total of 68 crashes within a 600 ' radius of the intersection of SR 21/SR 100 for the study period. Of these crashes, there were no fatal crashes or crashes involving bicyclists and/or pedestrians. Two crashes resulted in serious injuries and six crashes resulted in an injury. The results of the crash evaluation are summarized in this section.

The most common crash type was Rear End, with 35 crashes. Leftturn and angle crashes were the second most frequent crash types with 7 crashes each, as shown in Figure 4-1.

Figure 4-1. Crashes by Type

The year 2022 saw the highest number of crashes with 18. The years 2018 through 2020 experienced the fewest crashes with 12 per year.

Figure 4-2. Crashes by Year

Monday experienced the highest number of crashes during the week with Saturday experiencing the fewest

Figure 4-3. Crashes by Day of Week

A majority of crashes (54) occurred during daylight conditions. Fourteen crashes occurred in dark conditions.

Figure 4-4. Crashes by Lighting Conditions
The number of crashes peaked in the afternoon hours from 3 p.m. to 6 p.m.

Most crashes (62) occurred on dry road surface conditions. The remaining crashes (6) occurred on wet road surface conditions

Figure 4-6. Crashes by Roadway Condition

5.1 Proposed Improvements

Based on the FDOT guidance, the SR 21/SR 100 intersection analysis notes a wide range of intersection treatments through a similarly wide range of complexity, contexts, and costs. Priorities can be set by complexity, cost, local preference, and right-of-way availability. Needed safety and operational improvements at the SR 21/SR 100 intersection include new and modified lane striping, crosswalk remediation, access management, signal modifications, and sight distance improvements Figure 5-1 illustrates a concept plan of the improvements.

5.2 Pavement Markings

5.2.1. Skip Lines and New Crosswalks

A low-cost improvement for vehicular safety would be to provide new skip line striping to better represent and define turning movements in each direction. To eliminate long crosswalk distances, new crosswalks could be incorporated to align more perpendicular to the crossings and with relocated stop bars to direct traffic to stop short of the crosswalks. Crosswalks crossing diagonally do not follow the direction of leading or intercepting sidewalks, and the shortened walk distance shown in the concept is a safer alternative.

5.2.2. WB SR 100 to NB SR 21 Right Turn Lane Delineation

There is an abrupt right turn lane leading to the Walgreens entrance, immediately after the WB SR 100 to NB SR 21 right turn movement. A painted bump-out gore could be added to direct traffic directly to the NB SR 21 through lane, and then new markings and signage could be added to the right turn only lane to the CVS driveway entrance in addition to the "right lane must turn right" signage that exists currently. This improvement would remove the potential for rear end collisions by right turning vehicles that follow a vehicle intending to immediately turn right into the Walgreens site.

5.3 Signal Improvements

5.3.1. Signal Timing

Low-cost signal retiming changes could be made to allow safer pedestrian crossing within the proposed new crosswalks.

5.3.2. Lead Pedestrian Interval

A leading pedestrian interval (LPI) incorporated into the signal timing gives pedestrians the opportunity to enter the crosswalk at an intersection three to seven seconds before the vehicles are given a green light. Pedestrians can better establish their presence in the crosswalk before vehicles have priority to turn right or left. Signal timing changes are lower cost, early intervention safety improvements that can be done in an early phase of intersection improvements. A signal timing study could be initiated by asking FDOT District staff or a consultant to perform a study and/ or optimization adjustment recommendations. The analysis performed in Section 3.4.2 reflects an LPI of 7 seconds in the level of service calculation.

5.3.3. Signal Backplates

Adding retro-reflective signal backplates is also a low-cost safety countermeasure. SR 100 is aligned east-west, and at times with low sun angles, signals can be obscured by glare. Backplates should not be installed on the existing strain pole signals but would be an important safety feature on improved mast arm signals. Through field evaluation, background glare was observed which interferes with visual detection of the signals.

5.4 Intersection Design

5.4.1. Dedicated Northbound SR 21 Right-turn Lane

The vacant China Chef restaurant on the SE corner of the intersection is the first gateway introduction to the revitalized SR 21 S Lawrence Road downtown corridor. As noted previously, a dedicated NB SR 21 right turn lane would provide a safety improvement for the intersection. According to the FHWA Office of Safety, Proven Safety Countermeasures, the safety benefit of a dedicated right turn lane at an intersection is a 14% to 26% reduction in total crashes. The difficult northbound to eastbound 46-degree acute angle right turn at this intersection can only be accomplished by slow moving vehicles leading to a higher probability of rear end crashes. The turning movement for larger trucks is also difficult, requiring the vehicle to begin the turn at the left of the right turn lane and end it either in, or encroaching upon the WB SR 100 left turn lane. The addition of a right-turn lane would require the purchase of the existing vacant business parcel (Parcel \# 022006-000-00). A concept for this improvement is discussed in further detail in Section 5.5.

5.4.2. SB SR 21 Right Turn Movement

To segregate SB SR 21 to WB SR 100 right turning vehicles and to provide crosswalk pedestrian safe havens, a curbed directional traffic separator median could be built at moderate cost. This would shorten the walk distance across through lanes and provide a more direct crosswalk alignment than exists presently.
Appropriate pedestrian crosswalk notification and yield signs should be installed prior to and at the crosswalk. Shark teeth pavement markings should be included along with yield conditions signage prior to advancing to WB SR 100.
This separator island would be located where the wear pattern on the street surface would indicate the turning movements today. A lower cost alternative that may be done in advance of the curbed median would be to define the condition with pavement markings.
An Autoturn analysis was performed at this intersection and it was determined that a smaller semi-truck (WB-40) could navigate this turning movement with a raised separator. However, the largest semitruck (WB-62FL) would necessitate a smaller raised separator in order to make the turn (See Appendix C). Further engineering design and analysis would need to occur in order to determine the appropriate size of a traffic separator at this location.

Figure 5-1. SR 21/SR 100 Concept Plan

5.5 Turn Lane and Parking Area Concept

The focus of the SR 21/SR 200 Intersection Study was on the turning movements required in each direction on both roadways. The most difficult turning movement is an acute, 46-degree angle northbound right turn from SR 21 to SR 100 requiring large wheelbase vehicles to encroach left into the left turn lane on SR 21 and turning close to or into the left turn lane on SR 100. One solution discussed was to provide a dedicated right turn lane on SR 21 and provide a directional curbed median that would provide for right turns, but also allow a safer visible pedestrian crossing in a crosswalk across the right turn lane. To allow for the new right turn lane, acquisition of a parcel on the southeast corner would be required. An Autoturn analysis was performed to determine the appropriate turning radius for the NB right turn movement (See Appendix C). The concepts shown in the following pages represent an appropriate radius that would accommodate large semitrucks.

5.5.1. Proposed Parking Area

A concept for adaptive reuse of the acquired parcel for both a parking area and public space was considered and developed. Later, the concept was revised to investigate creating additional public parking on the acquired parcel, while developing arrangements that improved the parking for the remaining adjacent structure-a potential public-private partnership arrangement.

Figure 5-2 and Figure 5-3 on the following pages illustrate the proposed turn lane and parking area concept with the ROW boundaries overlaid. It should be noted that this concept was developed as a desktop exercise using available GIS data. No field survey data was collected. Any future concept would need to go through a thorough design and engineering process. The acreage calculations are approximations for the reuse of parcel \#022006-000-00 and are for reference only.

5.6 Public Parking

Through discussions with the City of Keystone Heights, the original concept was revised to show parking on the publicly acquired parcel shared with the existing private parking already in place. Approximately eight additional parking spaces could be added depending on the chosen site layout, and these additional spaces would mitigate the loss of one or two of the on-street parking spaces that would be used to create the right-turn lane.

5.7 Access Management

The parking concept plan indicates removal of the existing driveway access from SR 21 to the parking lot to eliminate it from close proximity to the intersection. Access to the new parking lot arrangement will be from SR 100 and Beasley Lane with a shared driveway with the existing parking lots. That would be a safe location for a full access driveway allowing left turns in from the median left turn lane, and out to the left turn lane.

新

This study focused on identifying problem areas at the SR 21/SR 200 intersection and providing recommendations to improve existing and future operations of the intersection as well as enhance multimodal mobility and safety for all users. The goal of the parking area concept is to reuse an existing vacant parcel to provide a safer turning movement to accommodate large trucks making a northbound right turn as well as to provide an entrance feature to downtown Keystone Heights.
Some of the recommendations identified as part of this study could be completed incrementally as funding becomes available. Table 6-1 provides a summary of all recommended improvements by phase.

Category	Proposed Improvement	Anticipated Effectiveness
Short-Term Improvements		
Pavement Markings	Skip Lines	There are no skip lines through the intersection currently. For this skewed intersection, skip lines would visually aid driver making turn movements.
	WB SR 100 to NB SR 21 Right Turn Delineation	A striped area for the WB SR 100 to NB SR 21 would prompt drivers to turn right into the through NB lane and then move into the right turn only lane to the Walgreens driveway after the turn which would decrease driver confusion and last second merging.
Signal Enhancements	Lead Pedestrian Interval (LPI)	Lead pedestrian interval signal timing would benefit pedestrians crossing multiple lanes and the additional crossing time could be added to the countdown timer pedestrian signal head. Audible countdowns could also be installed to aid sight limited individuals. These crossing aids would encourage pedestrian activity within the town center/business district. The analysis performed in Section 3.4.2 reflects a LPI of 7 seconds in the level of service calculation.
Medium-Term Improvements		
Intersection Design	Curbed Traffic Island SB SR 21 Right Turn Movement	The curbed traffic separator island at the NW quadrant of the intersection would make both vehicular turning movements and pedestrian crossings more predictable and controlled. The SB SR 21 to WB SR 100 right turn would be a yield-to-pedestrians movement at the pedestrian crossing and would be a safer right-turn on red after stop condition when entering WB SR 100 traffic.
Long-Term Improvements		
Signal Enhancements	Mast Arm Signals	Mast arm signals could be installed to more directly face the drivers approaching the intersection in each direction. The stability advantage for maintenance during high wind events would be improved.
	Signal Backplates	Signal backplates would improve signal visibility in low sun conditions on SR 100. Images indicate high glare conditions at times in both eastbound and westbound directions.
Intersection Design	Dedicated Northbound SR 21 Right-turn Lane	Intersection redesigns and construction are higher cost elements that can improve safety and operations at the SR 21/SR 100 intersection. If property acquisition can be accomplished to obtain right-of-way for the right turn lane, improvements to turning movements and pedestrian safety can be made.
Parking Area Concept	Construction of a new sign feature on SE corner of intersection	The Parking Area Concept would provide a monument feature delineating the entrance into downtown Keystone Heights. It would allow for additional parking spaces as well as provide a more pedestrian-friendly environment on that quadrant of the intersection. It would also provide a visually appealing sign feature to the downtown area.

ApPENDIX A: TrafFIC DATA

WWW.ALLTRAFFICDATA.NET

Site Code: 1

Start	25-Oct-22	SB		Hour Totals		
Time	Tue	Morning	Afternoon	Morning		Afternoon
12:00		0	88			
12:15		0	107			
12:30		0	99			
12:45		0	101		0	395
01:00		0	95			
01:15		0	90			
01:30		0	74			
01:45		0	86		0	345
02:00		0	109			
02:15		0	110			
02:30		0	117			
02:45		0	99		0	435
03:00		0	95			
03:15		0	85			
03:30		0	104			
03:45		0	104		0	388
04:00		0	106			
04:15		0	109			
04:30		0	119			
04:45		0	122		0	456
05:00		0	136			
05:15		0	106			
05:30		0	140			
05:45		0	115		0	497
06:00		48	0			
06:15		80	0			
06:30		80	0			
06:45		106	0		314	0
07:00		105	0			
07:15		77	0			
07:30		97	0			
07:45		115	0		394	0
08:00		98	0			
08:15		83	0			
08:30		90	0			
08:45		83	0		354	0
09:00		74	0			
09:15		78	0			
09:30		73	0			
09:45		93	0		318	0
10:00		78	0			
10:15		71	0			
10:30		74	0			
10:45		95	0		318	0
11:00		81	0			
11:15		78	0			
11:30		94	0			
11:45		80	0		333	0
Total		2031	2516			
Percent		44.7\%	55.3\%			

www.ALLTRAFFICDATA.NET

Site Code: 1

Start	26-Oct-22	SB		Hour Totals		
Time	Wed	Morning	Afternoon	Morning		Afternoon
12:00		0	101			
12:15		0	86			
12:30		0	103			
12:45		0	88		0	378
01:00		0	128			
01:15		0	99			
01:30		0	100			
01:45		0	81		0	408
02:00		0	81			
02:15		0	90			
02:30		0	112			
02:45		0	88		0	371
03:00		0	91			
03:15		0	100			
03:30		0	116			
03:45		0	115		0	422
04:00		0	101			
04:15		0	101			
04:30		0	82			
04:45		0	123		0	407
05:00		0	133			
05:15		0	126			
05:30		0	146			
05:45		0	114		0	519
06:00		40	0			
06:15		78	0			
06:30		73	0			
06:45		114	0		305	0
07:00		92	0			
07:15		94	0			
07:30		93	0			
07:45		111	0		390	0
08:00		98	0			
08:15		87	0			
08:30		75	0			
08:45		85	0		345	0
09:00		77	0			
09:15		63	0			
09:30		85	0			
09:45		62	0		287	0
10:00		80	0			
10:15		68	0			
10:30		100	0			
10:45		89	0		337	0
11:00		70	0			
11:15		78	0			
11:30		87	0			
11:45		99	0		334	0
Total		1998	2505			
Percent		44.4\%	55.6\%			

WWW.ALLTRAFFICDATA.NET

Site Code: 1

Start	27-Oct-22	SB		Hour Totals		
Time	Thu	Morning	Afternoon	Morning		Afternoon
12:00		0	97			
12:15		0	90			
12:30		0	105			
12:45		0	98		0	390
01:00		0	55			
01:15		0	95			
01:30		0	98			
01:45		0	75		0	323
02:00		0	98			
02:15		0	102			
02:30		0	121			
02:45		0	96		0	417
03:00		0	90			
03:15		0	91			
03:30		0	99			
03:45		0	106		0	386
04:00		0	112			
04:15		0	130			
04:30		0	119			
04:45		0	123		0	484
05:00		0	112			
05:15		0	104			
05:30		0	139			
05:45		0	134		0	489
06:00		55	0			
06:15		63	0			
06:30		69	0			
06:45		94	0		281	0
07:00		106	0			
07:15		71	0			
07:30		93	0			
07:45		101	0		371	0
08:00		127	0			
08:15		86	0			
08:30		79	0			
08:45		98	0		390	0
09:00		86	0			
09:15		77	0			
09:30		56	0			
09:45		77	0		296	0
10:00		87	0			
10:15		79	0			
10:30		74	0			
10:45		89	0		329	0
11:00		65	0			
11:15		91	0			
11:30		104	0			
11:45		102	0		362	0
Total		2029	2489			
Percent		44.9\%	55.1\%			
Grand Total		6058	7510			
Percent		44.6\%	55.4\%			
ADT		ADT 4,523		AAD	4,523	

All Traffic Data Services, Inc.

WWW.ALLTRAFFICDATA.NET

Site Code: 2

All Traffic Data Services, Inc.

WWW.ALLTRAFFICDATA.NET

Site Code: 2

All Traffic Data Services, Inc.

WWW.ALLTRAFFICDATA.NET

Site Code: 2

| Start
 Time | 27-Oct-22
 Thu | Morning | NB | Afternoon | Mour Totals |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Afternoon | | | | | |

WWW.ALLTRAFFICDATA.NET

Site Code: 3

Start	25-Oct-22	Morning WB Afternoon		Hour Totals			
Time	Tue			Morning		Afternoon	
12:00		0	106				
12:15		0	75				
12:30		0	93				
12:45		0	90		0		364
01:00		0	85				
01:15		0	85				
01:30		0	83				
01:45		0	98		0		351
02:00		0	76				
02:15		0	94				
02:30		0	83				
02:45		0	85		0		338
03:00		0	97				
03:15		0	103				
03:30		0	97				
03:45		0	97		0		394
04:00		0	98				
04:15		0	100				
04:30		0	81				
04:45		0	98		0		377
05:00		0	97				
05:15		0	105				
05:30		0	106				
05:45		0	64		0		372
06:00		54	0				
06:15		57	0				
06:30		89	0				
06:45		116	0		316		0
07:00		114	0				
07:15		68	0				
07:30		83	0				
07:45		95	0		360		0
08:00		91	0				
08:15		71	0				
08:30		103	0				
08:45		73	0		338		0
09:00		80	0				
09:15		80	0				
09:30		74	0				
09:45		83	0		317		0
10:00		82	0				
10:15		75	0				
10:30		72	0				
10:45		75	0		304		0
11:00		78	0				
11:15		83	0				
11:30		99	0				
11:45		107	0		367		0
Total		2002	2196				
Percent		47.7\%	52.3\%				

www.ALLTRAFFICDATA.NET

Site Code: 3

Start	26-Oct-22	WB		Hour Totals		
Time	Wed	Morning	Afternoon	Morning		Afternoon
12:00		0	89			
12:15		0	88			
12:30		0	90			
12:45		0	102		0	369
01:00		0	80			
01:15		0	97			
01:30		0	93			
01:45		0	101		0	371
02:00		0	80			
02:15		0	96			
02:30		0	96			
02:45		0	76		0	348
03:00		0	103			
03:15		0	96			
03:30		0	106			
03:45		0	88		0	393
04:00		0	105			
04:15		0	87			
04:30		0	95			
04:45		0	94		0	381
05:00		0	95			
05:15		0	94			
05:30		0	105			
05:45		0	94		0	388
06:00		53	0			
06:15		52	0			
06:30		92	0			
06:45		126	0		323	0
07:00		97	0			
07:15		76	0			
07:30		103	0			
07:45		97	0		373	0
08:00		106	0			
08:15		83	0			
08:30		77	0			
08:45		98	0		364	0
09:00		80	0			
09:15		97	0			
09:30		84	0			
09:45		91	0		352	0
10:00		83	0			
10:15		95	0			
10:30		89	0			
10:45		71	0		338	0
11:00		73	0			
11:15		97	0			
11:30		78	0			
11:45		83	0		331	0
Total		2081	2250			
Percent		48.0\%	52.0\%			

www.ALLTRAFFICDATA.NET

Site Code: 3

Start	27-Oct-22	WB		Hour Totals		
Time	Thu	Morning	Afternoon	Morning		Afternoon
12:00		0	95			
12:15		0	95			
12:30		0	92			
12:45		0	89		0	371
01:00		0	68			
01:15		0	101			
01:30		0	78			
01:45		0	87		0	334
02:00		0	86			
02:15		0	101			
02:30		0	105			
02:45		0	79		0	371
03:00		0	97			
03:15		0	80			
03:30		0	106			
03:45		0	82		0	365
04:00		0	91			
04:15		0	98			
04:30		0	124			
04:45		0	106		0	419
05:00		0	110			
05:15		0	114			
05:30		0	87			
05:45		0	95		0	406
06:00		50	0			
06:15		67	0			
06:30		74	0			
06:45		114	0		305	0
07:00		125	0			
07:15		78	0			
07:30		90	0			
07:45		105	0		398	0
08:00		79	0			
08:15		98	0			
08:30		95	0			
08:45		90	0		362	0
09:00		73	0			
09:15		76	0			
09:30		65	0			
09:45		90	0		304	0
10:00		68	0			
10:15		80	0			
10:30		91	0			
10:45		90	0		329	0
11:00		82	0			
11:15		83	0			
11:30		94	0			
11:45		93	0		352	0
Total		2050	2266			
Percent		47.5\%	52.5\%			
Grand Total		6133	6712			
Percent		47.7\%	52.3\%			
ADT		ADT 4,282		AAD	4,282	

WWW.ALLTRAFFICDATA.NET

Site Code: 4
Station ID: 4 SR 100 WEST OF

SR 21

Start	25-Oct-22	EB		Hour Totals		
Time	Tue	Morning	Afternoon	Morning		Afternoon
12:00		0	129			
12:15		0	109			
12:30		0	100			
12:45		0	119		0	457
01:00		0	122			
01:15		0	91			
01:30		0	105			
01:45		0	135		0	453
02:00		0	112			
02:15		0	97			
02:30		0	110			
02:45		0	142		0	461
03:00		0	131			
03:15		0	132			
03:30		0	139			
03:45		0	138		0	540
04:00		0	132			
04:15		0	135			
04:30		0	132			
04:45		0	147		0	546
05:00		0	188			
05:15		0	184			
05:30		0	157			
05:45		0	123		0	652
06:00		48	0			
06:15		57	0			
06:30		47	0			
06:45		64	0		216	0
07:00		85	0			
07:15		100	0			
07:30		76	0			
07:45		82	0		343	0
08:00		108	0			
08:15		110	0			
08:30		69	0			
08:45		107	0		394	0
09:00		81	0			
09:15		104	0			
09:30		86	0			
09:45		90	0		361	0
10:00		96	0			
10:15		76	0			
10:30		87	0			
10:45		85	0		344	0
11:00		87	0			
11:15		115	0			
11:30		105	0			
11:45		110	0		417	0
Total		2075	3109			
Percent		40.0\%	60.0\%			

All Traffic Data Services, Inc.

WWW.ALLTRAFFICDATA.NET

Site Code: 4
Station ID: 4 SR 100 WEST OF

SR 21

Start	26-Oct-22	EB		Hour Totals		
Time	Wed	Morning	Afternoon	Morning		Afternoon
12:00		0	162			
12:15		0	126			
12:30		0	116			
12:45		0	100		0	504
01:00		0	118			
01:15		0	119			
01:30		0	137			
01:45		0	113		0	487
02:00		0	112			
02:15		0	104			
02:30		0	111			
02:45		0	155		0	482
03:00		0	125			
03:15		0	137			
03:30		0	131			
03:45		0	126		0	519
04:00		0	137			
04:15		0	130			
04:30		0	140			
04:45		0	141		0	548
05:00		0	190			
05:15		0	167			
05:30		0	154			
05:45		0	114		0	625
06:00		41	0			
06:15		46	0			
06:30		46	0			
06:45		61	0		194	0
07:00		101	0			
07:15		84	0			
07:30		76	0			
07:45		111	0		372	0
08:00		99	0			
08:15		83	0			
08:30		89	0			
08:45		107	0		378	0
09:00		87	0			
09:15		78	0			
09:30		115	0			
09:45		94	0		374	0
10:00		113	0			
10:15		91	0			
10:30		106	0			
10:45		86	0		396	0
11:00		102	0			
11:15		111	0			
11:30		118	0			
11:45		104	0		435	0
Total		2149	3165			
Percent		40.4\%	59.6\%			

WWW.ALLTRAFFICDATA.NET

Site Code: 4
Station ID: 4 SR 100 WEST OF SR 21

Start	27-Oct-22	EB		Hour Totals		
Time	Thu	Morning	Afternoon	Morning		Afternoon
12:00		0	126			
12:15		0	121			
12:30		0	97			
12:45		0	127		0	471
01:00		0	98			
01:15		0	120			
01:30		0	98			
01:45		0	165		0	481
02:00		0	122			
02:15		0	115			
02:30		0	119			
02:45		0	144		0	500
03:00		0	128			
03:15		0	143			
03:30		0	122			
03:45		0	131		0	524
04:00		0	137			
04:15		0	169			
04:30		0	139			
04:45		0	137		0	582
05:00		0	195			
05:15		0	180			
05:30		0	166			
05:45		0	140		0	681
06:00		46	0			
06:15		43	0			
06:30		41	0			
06:45		59	0		189	0
07:00		92	0			
07:15		84	0			
07:30		101	0			
07:45		98	0		375	0
08:00		91	0			
08:15		98	0			
08:30		99	0			
08:45		112	0		400	0
09:00		90	0			
09:15		83	0			
09:30		102	0			
09:45		89	0		364	0
10:00		108	0			
10:15		112	0			
10:30		78	0			
10:45		94	0		392	0
11:00		101	0			
11:15		101	0			
11:30		107	0			
11:45		111	0		420	0
Total		2140	3239			
Percent		39.8\%	60.2\%			
Grand Total		6364	9513			
Percent		40.1\%	59.9\%			
ADT		ADT 5,292		AAD	5,292	

(303) 216-2439 www.alltrafficdata.net

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100 Eastbound				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South													
7:00 AM	0	38	41	13	0	51	54	20	0	11	33	8	0	5	65	36	375	1,318	0	0	0	0
7:15 AM	0	38	40	6	0	11	58	9	0	9	44	0	0	4	37	30	286	1,289	0	0	0	0
7:30 AM	0	38	44	19	0	14	65	11	0	8	25	2	0	12	52	29	319	1,347	0	0	0	0
7:45 AM	0	25	59	14	0	16	74	15	0	9	20	5	0	11	52	38	338	1,346	0	0	0	0
8:00 AM	0	30	45	16	0	26	41	12	0	14	32	3	0	14	64	49	346	1,353	1	0	0	0
8:15 AM	0	39	38	21	0	22	63	13	0	10	44	8	0	13	46	27	344		0	1	0	0
8:30 AM	0	36	42	21	0	29	56	10	0	11	29	5	0	16	37	26	318		0	1	0	0
8:45 AM	0	38	57	17	0	17	62	11	0	11	29	5	0	16	57	25	345		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	8	3	0	1	11	0	0	1	2	0	0	1	0	2	29
Lights	0	139	170	70	0	91	207	43	0	41	125	21	0	54	198	125	1,284
Mediums	0	4	4	2	0	2	4	3	0	4	7	0	0	4	6	0	40
Total	0	143	182	75	0	94	222	46	0	46	134	21	0	59	204	127	1,353

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	5.3\%				5.8\%				7.0\%				3.3\%				5.1\%
Heavy Vehicle \%	0.0\%	2.8\%	6.6\%	6.7\%	0.0\%	3.2\%	6.8\%	6.5\%	0.0\%	10.9\%	6.7\%	0.0\%	0.0\%	8.5\%	2.9\%	1.6\%	5.1\%
Peak Hour Factor	0.89				0.80				0.81				0.80				0.98
Peak Hour Factor	0.00	0.92	0.80	0.89	0.00	0.81	0.85	0.69	0.00	0.82	0.76	0.66	0.00	0.92	0.84	0.74	0.98

(303) 216-2439 www.alltrafficdata.net

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South	North												
11:00 AM	0	32	49	20	0	12	43	27	0	17	25	4	0	17	29	19	294	1,369	0	0	0	1
11:15 AM	0	35	51	15	0	14	56	13	0	11	38	10	0	13	50	28	334	1,464	0	0	0	0
11:30 AM	0	45	51	11	0	18	64	12	0	11	43	7	0	16	63	25	366	1,510	0	0	0	0
11:45 AM	0	31	55	25	0	19	63	11	0	20	39	10	0	21	46	35	375	1,496	0	0	0	0
12:00 PM	0	44	62	20	0	11	63	21	0	25	39	7	0	22	43	32	389	1,504	0	0	0	0
12:15 PM	0	41	60	20	0	17	62	16	0	16	50	8	0	20	35	35	380		0	0	0	0
12:30 PM	0	39	44	14	0	18	61	13	0	19	33	6	0	27	44	34	352		0	0	0	0
12:45 PM	0	41	67	19	0	12	58	19	0	22	40	7	0	22	43	33	383		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	14	1	0	0	22	0	0	1	6	0	0	3	2	2	51
Lights	0	157	209	75	0	65	220	58	0	67	158	31	0	72	176	118	1,406
Mediums	0	4	5	0	0	0	10	2	0	4	7	1	0	4	9	7	53
Total	0	161	228	76	0	65	252	60	0	72	171	32	0	79	187	127	1,510

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	
Heavy Vehicle \%	5.2\%				9.0\%				6.9\%				6.9\%				6.9\%
Heavy Vehicle \%	0.0\%	2.5\%	8.3\%	1.3\%	0.0\%	0.0\%	12.7\%	3.3\%	0.0\%	6.9\%	7.6\%	3.1\%	0.0\%	8.9\%	5.9\%	7.1\%	6.9\%
Peak Hour Factor	0.93				0.99				0.93				0.94				0.97
Peak Hour Factor	0.00	0.94	0.87	0.79	0.00	0.86	0.98	0.82	0.00	0.82	0.86	0.85	0.00	0.84	0.80	0.97	0.97

(303) 216-2439 www.alltrafficdata.net

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100 Eastbound				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South	rth												
4:00 PM	0	40	86	11	0	13	66	12	0	21	45	8	0	24	44	44	414	1,783	1	0	0	0
4:15 PM	0	68	86	15	0	14	67	17	0	15	59	5	0	34	46	50	476	1,853	0	0	0	0
4:30 PM	0	50	71	18	0	21	90	13	0	16	53	4	0	30	57	32	455	1,855	2	0	0	0
4:45 PM	0	49	74	14	0	19	68	19	0	9	57	6	0	33	56	34	438	1,868	0	0	2	0
5:00 PM	0	71	112	12	0	13	73	24	0	16	44	7	0	34	53	25	484	1,883	0	0	0	0
5:15 PM	0	57	109	14	0	22	74	18	0	12	63	5	0	36	38	30	478		2	0	0	0
5:30 PM	0	63	87	16	0	8	54	25	0	8	61	7	0	42	47	50	468		0	0	0	0
5:45 PM	0	60	62	18	0	14	56	25	0	20	58	6	0	34	63	37	453		0	0	0	0

Peak Rolling Hour Flow Rates

	Eastbound				Westbound				Northbound				Southbound				Total
Vehicle Type	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	1	1	0	0	12	0	0	0	2	0	0	1	7	1	25
Lights	0	250	368	59	0	56	236	90	0	55	221	25	0	143	189	138	1,830
Mediums	0	1	1	0	0	1	9	2	0	1	3	0	0	2	5	3	28
Total	0	251	370	60	0	57	257	92	0	56	226	25	0	146	201	142	1,883

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%		0.6				5.9\%				2.0\%				3.9\%			2.8\%
Heavy Vehicle \%	0.0\%	0.4\%	0.5\%	1.7\%	0.0\%	1.8\%	8.2\%	2.2\%	0.0\%	1.8\%	2.2\%	0.0\%	0.0\%	2.1\%	6.0\%	2.8\%	2.8\%
Peak Hour Factor		0.8				0.92				0.91				0.8			0.97
Peak Hour Factor	0.00	0.88	0.85	0.83	0.00	0.85	0.85	0.92	0.00	0.73	0.90	0.89	0.00	0.87	0.93	0.80	0.97

(303) 216-2439 www.alltrafficdata.net

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	North
7:00 AM	0	38	34	13	0	51	47	16	0	8	30	7	0	3	60	42	349	1,269	0	0	0	0
7:15 AM	0	39	53	8	0	17	41	10	0	11	34	2	0	6	44	27	292	1,261	0	0	0	0
7:30 AM	0	24	48	4	0	7	72	4	0	8	28	5	0	8	57	32	297	1,281	0	0	0	0
7:45 AM	0	25	46	11	0	14	65	16	0	11	26	2	0	13	59	43	331	1,300	0	0	0	0
8:00 AM	0	39	44	25	0	29	50	12	0	13	22	9	0	13	52	33	341	1,273	0	0	0	0
8:15 AM	0	44	53	13	0	16	45	10	0	10	29	9	0	9	53	21	312		0	0	0	0
8:30 AM	0	30	25	14	0	22	68	13	0	11	39	4	0	10	43	37	316		0	0	0	0
8:45 AM	0	33	58	16	0	14	48	11	0	8	30	3	0	19	40	24	304		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	1	11	0	0	0	8	1	0	2	3	0	0	0	2	0	28
Lights	0	133	151	61	0	79	214	48	0	42	111	24	0	41	201	130	1,235
Mediums	0	4	6	2	0	2	6	2	0	1	2	0	0	4	4	4	37
Total	0	138	168	63	0	81	228	51	0	45	116	24	0	45	207	134	1,300

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	6.5\%				5.3\%				4.3\%				3.6\%				5.0\%
Heavy Vehicle \%	0.0\%	3.6\%	10.1\%	3.2\%	0.0\%	2.5\%	6.1\%	5.9\%	0.0\%	6.7\%	4.3\%	0.0\%	0.0\%	8.9\%	2.9\%	3.0\%	5.0\%
Peak Hour Factor	0.90				0.79				0.87				0.86				0.95
Peak Hour Factor	0.00	0.83	0.90	0.68	0.00	0.44	0.81	0.80	0.00	0.87	0.77	0.69	0.00	0.67	0.94	0.84	0.95

(303) 216-2439 www.alltrafficdata.net

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South	North												
11:00 AM	0	27	46	14	0	13	50	15	0	15	33	6	0	17	35	29	300	1,355	0	0	0	0
11:15 AM	0	29	68	18	0	22	50	11	0	11	38	4	0	19	37	22	329	1,460	0	0	0	0
11:30 AM	0	26	66	13	0	17	66	16	0	18	46	8	0	16	39	39	370	1,477	0	0	0	0
11:45 AM	0	35	55	20	0	18	74	15	0	15	39	5	0	10	34	36	356	1,454	0	0	0	0
12:00 PM	0	49	63	17	0	17	58	31	0	24	49	9	0	16	36	36	405	1,476	0	0	0	0
12:15 PM	0	43	53	13	0	14	48	13	0	19	24	12	0	22	43	42	346		0	0	0	0
12:30 PM	0	25	61	14	0	19	62	12	0	18	32	5	0	19	44	36	347		0	0	0	0
12:45 PM	0	48	56	15	0	18	49	23	0	16	42	10	0	19	45	37	378		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	1	10	1	0	0	8	0	0	0	4	0	0	2	5	0	31
Lights	0	146	222	61	0	63	229	70	0	71	150	32	0	60	141	149	1,394
Mediums	0	6	5	1	0	3	9	5	0	5	4	2	0	2	6	4	52
Total	0	153	237	63	0	66	246	75	0	76	158	34	0	64	152	153	1,477

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	5.3\%				6.5\%				5.6\%				5.1\%				5.6\%
Heavy Vehicle \%	0.0\%	4.6\%	6.3\%	3.2\%	0.0\%	4.5\%	6.9\%	6.7\%	0.0\%	6.6\%	5.1\%	5.9\%	0.0\%	6.3\%	7.2\%	2.6\%	5.6\%
Peak Hour Factor	0.89				0.92				0.82				0.92				0.91
Peak Hour Factor	0.00	0.84	0.93	0.85	0.00	0.84	0.84	0.64	0.00	0.80	0.88	0.75	0.00	0.86	0.93	0.91	0.91

(303) 216-2439 www.alltrafficdata.net

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	North
4:00 PM	0	41	76	15	0	19	64	15	0	11	44	7	0	19	49	38	398	1,676	0	0	0	0
4:15 PM	0	47	77	11	0	11	72	17	0	10	64	4	0	21	51	37	422	1,772	0	0	0	1
4:30 PM	0	44	76	12	0	11	50	20	0	18	58	13	0	35	52	32	421	1,811	0	0	0	0
4:45 PM	0	40	97	10	0	7	73	18	0	15	48	5	0	34	61	27	435	1,873	0	0	0	0
5:00 PM	0	78	96	14	0	18	62	17	0	17	51	5	0	39	62	35	494	1,833	0	0	2	0
5:15 PM	0	67	107	10	0	13	67	25	0	12	46	8	0	33	44	29	461		0	0	0	0
5:30 PM	0	58	89	10	0	19	60	27	0	18	58	4	0	27	58	55	483		0	0	0	0
5:45 PM	0	52	54	17	0	17	36	11	0	15	74	4	0	33	43	39	395		0	0	0	2

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	5	0	0	0	1	1	0	1	1	0	0	2	2	1	14
Lights	0	240	380	44	0	57	257	86	0	59	200	22	0	129	223	142	1,839
Mediums	0	3	4	0	0	0	4	0	0	2	2	0	0	2	0	3	20
Total	0	243	389	44	0	57	262	87	0	62	203	22	0	133	225	146	1,873

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	1.8\%				1.5\%				2.1\%				2.0\%				1.8\%
Heavy Vehicle \%	0.0\%	1.2\%	2.3\%	0.0\%	0.0\%	0.0\%	1.9\%	1.1\%	0.0\%	4.8\%	1.5\%	0.0\%	0.0\%	3.0\%	0.9\%	2.7\%	1.8\%
Peak Hour Factor	0.90				0.96				0.84				0.90				0.95
Peak Hour Factor	0.00	0.82	0.91	0.75	0.00	0.88	0.90	0.81	0.00	0.86	0.77	0.60	0.00	0.90	0.91	0.72	0.95

(303) 216-2439 www.alltrafficdata.net

Date: Wednesday, October 26, 2022
Peak Hour: 07:30 AM - 08:30 AM
Peak 15-Minutes: 08:00 AM - 08:15 AM

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South	North												
7:00 AM	0	47	42	12	0	43	42	12	0	9	36	5	0	7	58	27	340	1,296	0	0	0	0
7:15 AM	0	30	43	11	0	19	46	11	0	7	36	6	0	13	50	31	303	1,312	0	0	0	0
7:30 AM	0	26	39	11	0	16	73	14	0	10	16	3	0	9	46	38	301	1,320	0	0	0	0
7:45 AM	0	34	59	18	0	20	66	11	0	8	21	4	0	12	59	40	352	1,302	0	0	0	0
8:00 AM	0	37	46	16	0	27	57	22	0	12	35	6	0	9	54	35	356	1,277	0	0	0	0
8:15 AM	0	33	43	7	0	18	55	10	0	17	34	7	0	8	57	22	311		0	0	0	0
8:30 AM	0	21	50	18	0	17	49	11	0	12	24	6	0	14	44	17	283		0	0	0	0
8:45 AM	0	37	57	13	0	26	55	17	0	11	21	5	0	11	45	29	327		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	1	8	1	0	0	7	2	0	2	1	0	0	0	1	0	23
Lights	0	119	166	50	0	78	242	52	0	45	101	19	0	32	211	133	1,248
Mediums	0	10	13	1	0	3	2	3	0	0	4	1	0	6	4	2	49
Total	0	130	187	52	0	81	251	57	0	47	106	20	0	38	216	135	1,320

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	9.2\%				4.4\%				4.6\%				3.3\%				5.5\%
Heavy Vehicle \%	0.0\%	8.5\%	11.2\%	3.8\%	0.0\%	3.7\%	3.6\%	8.8\%	0.0\%	4.3\%	4.7\%	5.0\%	0.0\%	15.8\%	2.3\%	1.5\%	5.5\%
Peak Hour Factor	0.86				0.92				0.82				0.89				0.93
Peak Hour Factor	0.00	0.73	0.84	0.82	0.00	0.57	0.86	0.68	0.00	0.76	0.81	0.86	0.00	0.77	0.92	0.90	0.93

(303) 216-2439 www.alltrafficdata.net

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	SR 100				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South	North												
11:00 AM	0	29	60	13	0	15	47	11	0	12	42	7	0	16	30	24	306	1,336	0	0	0	1
11:15 AM	0	37	56	18	0	9	67	21	0	21	39	4	0	17	31	30	350	1,436	0	0	0	0
11:30 AM	0	45	61	12	0	17	48	13	0	18	28	5	0	9	43	35	334	1,458	1	0	0	0
11:45 AM	0	27	56	21	0	17	49	17	0	16	36	8	0	20	37	42	346	1,484	0	0	0	0
12:00 PM	0	61	77	24	0	15	61	13	0	14	34	6	0	17	46	38	406	1,471	0	0	0	0
12:15 PM	0	43	64	19	0	16	61	11	0	18	43	11	0	12	39	35	372		0	0	0	0
12:30 PM	0	35	63	18	0	16	57	17	0	9	40	2	0	26	35	42	360		1	0	0	0
12:45 PM	0	37	46	17	0	20	64	18	0	11	25	7	0	11	38	39	333		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	5	0	0	1	11	0	0	0	5	0	0	3	2	0	27
Lights	0	164	250	80	0	62	213	56	0	55	144	25	0	70	152	156	1,427
Mediums	0	2	5	2	0	1	4	2	0	2	4	2	0	2	3	1	30
Total	0	166	260	82	0	64	228	58	0	57	153	27	0	75	157	157	1,484

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	2.8\%				5.4\%				5.5\%				2.8\%				3.8\%
Heavy Vehicle \%	0.0\%	1.2\%	3.8\%	2.4\%	0.0\%	3.1\%	6.6\%	3.4\%	0.0\%	3.5\%	5.9\%	7.4\%	0.0\%	6.7\%	3.2\%	0.6\%	3.8\%
Peak Hour Factor	0.79				0.90				0.82				0.94				0.91
Peak Hour Factor	0.00	0.72	0.84	0.85	0.00	0.84	0.95	0.76	0.00	0.82	0.89	0.68	0.00	0.72	0.90	0.93	0.91

(303) 216-2439 www.alltrafficdata.net

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval Start Time	SR 100 Eastbound				SR 100 Westbound				SR 21 Northbound				SR 21 Southbound				Total	Rolling Hour	Pedestrian Crossings			
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	North
4:00 PM	0	47	71	19	0	18	68	19	0	20	50	3	0	30	36	35	416	1,604	4	0	0	0
4:15 PM	0	35	75	20	0	12	61	14	0	17	42	10	0	19	45	37	387	1,698	0	0	0	0
4:30 PM	0	44	75	21	0	14	62	19	0	21	31	4	0	19	35	28	373	1,810	1	0	0	0
4:45 PM	0	45	81	15	0	9	71	14	0	17	44	9	0	39	40	44	428	1,905	0	0	0	0
5:00 PM	0	68	107	15	0	19	58	18	0	13	68	11	0	37	61	35	510	1,861	0	0	0	0
5:15 PM	0	59	84	24	0	15	52	27	0	35	67	10	0	34	59	33	499		0	0	0	0
5:30 PM	0	54	85	15	0	15	67	23	0	16	39	8	0	31	65	50	468		0	0	0	0
5:45 PM	0	41	61	12	0	19	50	25	0	12	44	6	0	23	57	34	384		0	0	0	0

Peak Rolling Hour Flow Rates

Vehicle Type	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Articulated Trucks	0	0	8	0	0	0	7	0	0	0	0	0	0	1	1	0	17
Lights	0	225	345	69	0	57	237	78	0	81	213	37	0	135	223	159	1,859
Mediums	0	1	4	0	0	1	4	4	0	0	5	1	0	5	1	3	29
Total	0	226	357	69	0	58	248	82	0	81	218	38	0	141	225	162	1,905

Heavy Vehicle Percentage and Peak Hour Factor

	Eastbound				Westbound				Northbound				Southbound				Total
	U-Turn	Left	Thru	Right													
Heavy Vehicle \%	2.0\%				4.1\%				1.8\%				2.1\%				2.4\%
Heavy Vehicle \%	0.0\%	0.4\%	3.4\%	0.0\%	0.0\%	1.7\%	4.4\%	4.9\%	0.0\%	0.0\%	2.3\%	2.6\%	0.0\%	4.3\%	0.9\%	1.9\%	2.4\%
Peak Hour Factor	0.86				0.92				0.75				0.90				0.93
Peak Hour Factor	0.00	0.83	0.83	0.78	0.00	0.89	0.92	0.86	0.00	0.61	0.80	0.86	0.00	0.90	0.93	0.81	0.93

Appendix B: SYNCHRO ANALYSIS

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow		7				\dagger	7	*	\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	t		${ }^{*}$	4	「
Traffic Volume (vph)	143	182	75	94	222	46	46	134	21	59	204	127
Future Volume (vph)	143	182	75	94	222	46	46	134	21	59	204	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.97		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1793		1787	1830		1651	1718		1768	1900	1753
Flt Permitted	0.53	1.00		0.57	1.00		0.34	1.00		0.47	1.00	1.00
Satd. Flow (perm)	1015	1793		1074	1830		588	1718		884	1900	1753
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	146	186	77	96	227	47	47	137	21	60	208	130
RTOR Reduction (vph)	0	7	0	0	4	0	0	4	0	0	0	111
Lane Group Flow (vph)	146	256	0	96	270	0	47	154	0	60	208	19
Confl. Peds. (\#/hr)			1			1	1		1	1		1
Heavy Vehicles (\%)	0\%	4\%	4\%	1\%	5\%	0\%	2\%	1\%	0\%	2\%	0\%	2\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8			4		4
Actuated Green, G (s)	86.4	76.4		83.2	74.8		27.7	20.4		28.3	20.6	20.6
Effective Green, g (s)	86.4	76.4		83.2	74.8		27.7	20.4		28.3	20.6	20.6
Actuated g/C Ratio	0.62	0.55		0.59	0.53		0.20	0.15		0.20	0.15	0.15
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	682	978		681	977		171	250		227	279	257
v/s Ratio Prot	c0.02	0.14		0.01	c0.15		0.01	0.09		c0.01	c0.11	
v/s Ratio Perm	0.12			0.08			0.04			0.04		0.01
v/c Ratio	0.21	0.26		0.14	0.28		0.27	0.61		0.26	0.75	0.07
Uniform Delay, d1	11.4	16.9		12.2	17.8		46.7	56.1		46.2	57.2	51.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.2	0.7		0.1	0.7		0.9	4.4		0.6	10.3	0.1
Delay (s)	11.5	17.5		12.3	18.5		47.6	60.6		46.9	67.5	51.6
Level of Service	B	B		B	B		D	E		D	E	D
Approach Delay (s)		15.4			16.9			57.6			59.2	
Approach LOS		B			B			E			E	

Intersection Summary			
HCM 2000 Control Delay	34.7	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.36		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	C
Intersection Capacity Utilization	71.4%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow	\cdots	7			4	4	p	t	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\dagger		${ }^{7}$	\uparrow		${ }^{7}$	$\hat{\beta}$		${ }^{7}$	4	「
Traffic Volume (vph)	251	370	60	57	257	92	56	226	25	146	201	142
Future Volume (vph)	251	370	60	57	257	92	56	226	25	146	201	142
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1910		1805	1819		1682	1731		1787	1845	1764
Flt Permitted	0.39	1.00		0.44	1.00		0.43	1.00		0.34	1.00	1.00
Satd. Flow (perm)	749	1910		828	1819		768	1731		639	1845	1764
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	259	381	62	59	265	95	58	233	26	151	207	146
RTOR Reduction (vph)	0	3	0	0	8	0	0	3	0	0	0	116
Lane Group Flow (vph)	259	440	0	59	352	0	58	256	0	151	207	30
Confl. Peds. (\#/hr)			2				2					2
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	5\%	0\%	0\%	1\%	0\%	1\%	3\%	1\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8			4		4
Actuated Green, G (s)	83.2	70.9		69.4	63.1		36.2	28.8		38.4	28.4	28.4
Effective Green, g (s)	83.2	70.9		69.4	63.1		36.2	28.8		38.4	28.4	28.4
Actuated g/C Ratio	0.59	0.51		0.50	0.45		0.26	0.21		0.27	0.20	0.20
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	551	967		454	819		246	356		257	374	357
v/s Ratio Prot	c0.05	0.23		0.01	0.19		0.01	c0.15		c0.04	0.11	
v/s Ratio Perm	c0.23			0.06			0.05			0.12		0.02
v/c Ratio	0.47	0.45		0.13	0.43		0.24	0.72		0.59	0.55	0.08
Uniform Delay, d1	15.2	22.2		18.7	26.2		40.2	51.8		40.9	50.1	45.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.6	1.5		0.1	1.6		0.5	6.8		3.4	1.8	0.1
Delay (s)	15.8	23.7		18.8	27.8		40.6	58.6		44.3	51.9	45.3
Level of Service	B	C		B	C		D	E		D	D	D
Approach Delay (s)		20.8			26.6			55.3			47.7	
Approach LOS		C			C			E			D	

Intersection Summary			
HCM 2000 Control Delay	34.7	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.58		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	D
Intersection Capacity Utilization	74.5%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow		7				4	7	*	\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个		${ }^{*}$	\uparrow		${ }^{7}$	t		${ }^{*}$	4	7
Traffic Volume (vph)	206	263	108	137	321	66	66	194	30	85	296	184
Future Volume (vph)	206	263	108	137	321	66	66	194	30	85	296	184
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.97		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1793		1787	1830		1651	1717		1769	1900	1753
Flt Permitted	0.38	1.00		0.45	1.00		0.26	1.00		0.36	1.00	1.00
Satd. Flow (perm)	730	1793		847	1830		457	1717		662	1900	1753
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	210	268	110	140	328	67	67	198	31	87	302	188
RTOR Reduction (vph)	0	8	0	0	4	0	0	4	0	0	0	149
Lane Group Flow (vph)	210	370	0	140	391	0	67	225	0	87	302	39
Confl. Peds. (\#/hr)			1			1	1		1	1		1
Heavy Vehicles (\%)	0\%	4\%	4\%	1\%	5\%	0\%	2\%	1\%	0\%	2\%	0\%	2\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8			4		4
Actuated Green, G (s)	79.6	67.1		73.6	64.1		34.7	27.1		38.1	28.8	28.8
Effective Green, g (s)	79.6	67.1		73.6	64.1		34.7	27.1		38.1	28.8	28.8
Actuated g/C Ratio	0.57	0.48		0.53	0.46		0.25	0.19		0.27	0.21	0.21
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	511	859		509	837		178	332		253	390	360
v/s Ratio Prot	c0.04	c0.21		0.02	c0.21		0.02	0.13		c0.02	c0.16	
v/s Ratio Perm	0.20			0.13			0.07			0.07		0.02
v/c Ratio	0.41	0.43		0.28	0.47		0.38	0.68		0.34	0.77	0.11
Uniform Delay, d1	16.3	23.9		17.5	26.2		42.1	52.4		39.6	52.5	45.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.5	1.6		0.3	1.9		1.3	5.4		0.8	9.3	0.1
Delay (s)	16.8	25.5		17.8	28.0		43.4	57.8		40.4	61.8	45.3
Level of Service	B	C		B	C		D	E		D	E	D
Approach Delay (s)		22.4			25.4			54.6			53.2	
Approach LOS		C			C			D			D	

Intersection Summary			
HCM 2000 Control Delay	36.9	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.54		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	D
Intersection Capacity Utilization	79.6%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow		7				4	P	*	\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{7}$	\uparrow		${ }^{7}$	\uparrow		${ }^{*}$	4	「
Traffic Volume (vph)	363	536	86	83	372	133	81	327	36	211	291	205
Future Volume (vph)	363	536	86	83	372	133	81	327	36	211	291	205
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1805	1910		1805	1819		1683	1731		1787	1845	1764
Flt Permitted	0.10	1.00		0.19	1.00		0.34	1.00		0.23	1.00	1.00
Satd. Flow (perm)	182	1910		367	1819		609	1731		430	1845	1764
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	374	553	89	86	384	137	84	337	37	218	300	211
RTOR Reduction (vph)	0	4	0	0	9	0	0	3	0	0	0	156
Lane Group Flow (vph)	374	638	0	86	512	0	84	371	0	218	300	55
Confl. Peds. (\#/hr)			2				2					2
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	5\%	0\%	0\%	1\%	0\%	1\%	3\%	1\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8			4		4
Actuated Green, G (s)	73.4	58.9		51.9	43.4		45.7	36.6		48.5	36.5	36.5
Effective Green, g (s)	73.4	58.9		51.9	43.4		45.7	36.6		48.5	36.5	36.5
Actuated g/C Ratio	0.52	0.42		0.37	0.31		0.33	0.26		0.35	0.26	0.26
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	373	803		223	563		268	452		265	481	459
v/s Ratio Prot	c0.17	0.33		0.02	0.28		0.02	c0.21		c0.07	0.16	
v/s Ratio Perm	c0.35			0.12			0.08			0.21		0.03
v/c Ratio	1.00	0.79		0.39	0.91		0.31	0.82		0.82	0.62	0.12
Uniform Delay, d1	43.6	35.3		31.3	46.4		34.3	48.6		37.1	45.7	39.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	47.3	8.0		1.1	21.1		0.7	11.4		18.3	2.5	0.1
Delay (s)	90.8	43.3		32.4	67.6		35.0	60.0		55.3	48.2	39.6
Level of Service	F	D		C	E		C	E		E	D	D
Approach Delay (s)		60.8			62.6			55.4			47.8	
Approach LOS		E			E			E			D	

Intersection Summary			E
HCM 2000 Control Delay	56.9	HCM 2000 Level of Service	
HCM 2000 Volume to Capacity ratio	0.98		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	F
Intersection Capacity Utilization	98.9%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow		7				\dagger	\%	V	$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{7}$	个		${ }^{7}$	4	F	${ }^{*}$	4	「
Traffic Volume (vph)	143	182	75	94	222	46	46	134	21	59	204	127
Future Volume (vph)	143	182	75	94	222	46	46	134	21	59	204	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1793		1787	1830		1651	1756	1472	1767	1900	1753
Flt Permitted	0.53	1.00		0.57	1.00		0.34	1.00	1.00	0.54	1.00	1.00
Satd. Flow (perm)	1015	1793		1074	1830		588	1756	1472	1000	1900	1753
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	146	186	77	96	227	47	47	137	21	60	208	130
RTOR Reduction (vph)	0	7	0	0	4	0	0	0	18	0	0	111
Lane Group Flow (vph)	146	256	0	96	270	0	47	137	3	60	208	19
Confl. Peds. (\#/hr)			1			1	1		1	1		1
Heavy Vehicles (\%)	0\%	4\%	4\%	1\%	5\%	0\%	2\%	1\%	0\%	2\%	0\%	2\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8		8	4		4
Actuated Green, G (s)	86.4	76.4		83.2	74.8		27.7	20.4	20.4	28.3	20.6	20.6
Effective Green, g (s)	86.4	76.4		83.2	74.8		27.7	20.4	20.4	28.3	20.6	20.6
Actuated g/C Ratio	0.62	0.55		0.59	0.53		0.20	0.15	0.15	0.20	0.15	0.15
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	682	978		681	977		171	255	214	244	279	257
v/s Ratio Prot	c0.02	0.14		0.01	c0.15		c0.01	0.08		0.01	c0.11	
v/s Ratio Perm	0.12			0.08			0.04		0.00	0.04		0.01
v/c Ratio	0.21	0.26		0.14	0.28		0.27	0.54	0.01	0.25	0.75	0.07
Uniform Delay, d1	11.4	16.9		12.2	17.8		46.7	55.4	51.2	46.2	57.2	51.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.7		0.1	0.7		0.9	2.2	0.0	0.5	10.3	0.1
Delay (s)	11.5	17.5		12.3	18.5		47.6	57.6	51.2	46.7	67.5	51.6
Level of Service	B	B		B	B		D	E	D	D	E	D
Approach Delay (s)		15.4			16.9			54.6			59.2	
Approach LOS		B			B			D			E	

Intersection Summary			
HCM 2000 Control Delay	34.2	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.36		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	C
Intersection Capacity Utilization	71.4%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow	\checkmark	7				4	p		$\frac{1}{7}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	F		${ }^{7}$	\uparrow		${ }^{7}$	4	「	${ }^{*}$	4	「
Traffic Volume (vph)	251	370	60	57	257	92	56	226	25	146	201	142
Future Volume (vph)	251	370	60	57	257	92	56	226	25	146	201	142
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1910		1805	1819		1682	1756	1507	1787	1845	1764
Flt Permitted	0.40	1.00		0.44	1.00		0.42	1.00	1.00	0.38	1.00	1.00
Satd. Flow (perm)	762	1910		838	1819		742	1756	1507	710	1845	1764
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	259	381	62	59	265	95	58	233	26	151	207	146
RTOR Reduction (vph)	0	3	0	0	8	0	0	0	21	0	0	118
Lane Group Flow (vph)	259	440	0	59	352	0	58	233	5	151	207	28
Confl. Peds. (\#/hr)			2				2					2
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	5\%	0\%	0\%	1\%	0\%	1\%	3\%	1\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8		8	4		4
Actuated Green, G (s)	84.7	72.5		71.0	64.8		34.7	27.3	27.3	36.9	26.9	26.9
Effective Green, g (s)	84.7	72.5		71.0	64.8		34.7	27.3	27.3	36.9	26.9	26.9
Actuated g/C Ratio	0.61	0.52		0.51	0.46		0.25	0.20	0.20	0.26	0.19	0.19
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	564	989		467	841		233	342	293	264	354	338
v/s Ratio Prot	c0.05	0.23		0.01	0.19		0.01	c0.13		c0.04	0.11	
v/s Ratio Perm	c0.23			0.06			0.05		0.00	0.11		0.02
v/c Ratio	0.46	0.44		0.13	0.42		0.25	0.68	0.02	0.57	0.58	0.08
Uniform Delay, d1	14.4	21.1		17.8	25.1		41.3	52.3	45.5	41.9	51.5	46.4
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	1.4		0.1	1.5		0.6	5.5	0.0	3.0	2.5	0.1
Delay (s)	15.0	22.6		18.0	26.6		41.9	57.8	45.5	44.9	53.9	46.5
Level of Service	B	C		B	C		D	E	D	D	D	D
Approach Delay (s)		19.8			25.4			53.9			49.1	
Approach LOS		B			C			D			D	

Intersection Summary			
HCM 2000 Control Delay	34.2	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.56		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	D
Intersection Capacity Utilization	73.0%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2：SR 21 \＆SR 100

	4	\rightarrow		7				\dagger	\％	（	$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个		${ }^{7}$	个		${ }^{7}$	4	F	${ }^{*}$	4	「
Traffic Volume（vph）	206	263	108	137	321	66	66	194	30	85	296	184
Future Volume（vph）	206	263	108	137	321	66	66	194	30	85	296	184
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time（s）	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util．Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb，ped／bikes	1.00	0.99		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1805	1793		1787	1830		1651	1756	1472	1768	1900	1753
Flt Permitted	0.39	1.00		0.45	1.00		0.26	1.00	1.00	0.42	1.00	1.00
Satd．Flow（perm）	733	1793		849	1830		449	1756	1472	778	1900	1753
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	210	268	110	140	328	67	67	198	31	87	302	188
RTOR Reduction（vph）	0	8	0	0	4	0	0	0	25	0	0	150
Lane Group Flow（vph）	210	370	0	140	391	0	67	198	6	87	302	38
Confl．Peds．（\＃／hr）			1			1	1		1	1		1
Heavy Vehicles（\％）	0\％	4\％	4\％	1\％	5\％	0\％	2\％	1\％	0\％	2\％	0\％	2\％
Turn Type	pm＋pt	NA		pm＋pt	NA		pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8		8	4		4
Actuated Green，G（s）	79.9	67.4		73.9	64.4		34.4	26.8	26.8	37.8	28.5	28.5
Effective Green，g（s）	79.9	67.4		73.9	64.4		34.4	26.8	26.8	37.8	28.5	28.5
Actuated g／C Ratio	0.57	0.48		0.53	0.46		0.25	0.19	0.19	0.27	0.20	0.20
Clearance Time（s）	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）	514	863		511	841		175	336	281	275	386	356
v／s Ratio Prot	c0．04	c0．21		0.02	c0．21		0.02	0.11		c0．02	c0．16	
v／s Ratio Perm	0.20			0.13			0.07		0.00	0.06		0.02
v／c Ratio	0.41	0.43		0.27	0.46		0.38	0.59	0.02	0.32	0.78	0.11
Uniform Delay，d1	16.1	23.7		17.4	26.0		42.3	51.6	46.0	39.6	52.8	45.4
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	0.5	1.6		0.3	1.8		1.4	2.6	0.0	0.7	9.9	0.1
Delay（s）	16.6	25.3		17.7	27.8		43.7	54.2	46.0	40.3	62.7	45.5
Level of Service	B	C		B	C		D	D	D	D	E	D
Approach Delay（s）		22.2			25.1			51.0			53.7	
Approach LOS		C			C			D			D	

Intersection Summary			
HCM 2000 Control Delay	36.4	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.54		28.0
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	D
Intersection Capacity Utilization	79.6%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: SR 21 \& SR 100

	4	\rightarrow		7				4	7	*	\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	4	「	${ }^{*}$	4	7
Traffic Volume (vph)	363	536	86	83	372	133	81	327	36	211	291	205
Future Volume (vph)	363	536	86	83	372	133	81	327	36	211	291	205
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	13	12	13	13	10	10	10	12	12	16
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1910		1805	1819		1683	1756	1507	1787	1845	1764
Flt Permitted	0.11	1.00		0.20	1.00		0.32	1.00	1.00	0.30	1.00	1.00
Satd. Flow (perm)	203	1910		387	1819		575	1756	1507	555	1845	1764
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	374	553	89	86	384	137	84	337	37	218	300	211
RTOR Reduction (vph)	0	4	0	0	9	0	0	0	27	0	0	157
Lane Group Flow (vph)	374	638	0	86	512	0	84	337	10	218	300	54
Confl. Peds. (\#/hr)			2				2					2
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	5\%	0\%	0\%	1\%	0\%	1\%	3\%	1\%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	11	2		9	6		10	8		12	4	
Permitted Phases	2			6			8		8	4		4
Actuated Green, G (s)	74.4	59.9		52.9	44.4		45.7	36.6	36.6	46.5	35.5	35.5
Effective Green, g (s)	74.4	59.9		52.9	44.4		45.7	36.6	36.6	46.5	35.5	35.5
Actuated g/C Ratio	0.53	0.43		0.38	0.32		0.33	0.26	0.26	0.33	0.25	0.25
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	382	817		232	576		259	459	393	281	467	447
v/s Ratio Prot	c0.17	0.33		0.02	0.28		0.02	0.19		c0.06	0.16	
v/s Ratio Perm	c0.35			0.12			0.08		0.01	c0.20		0.03
v/c Ratio	0.98	0.78		0.37	0.89		0.32	0.73	0.02	0.78	0.64	0.12
Uniform Delay, d1	41.4	34.4		30.5	45.5		34.4	47.3	38.4	39.1	46.6	40.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	40.0	7.3		1.0	18.3		0.7	6.0	0.0	12.6	3.0	0.1
Delay (s)	81.4	41.7		31.6	63.8		35.2	53.3	38.5	51.6	49.6	40.3
Level of Service	F	D		C	E		D	D	D	D	D	D
Approach Delay (s)		56.3			59.2			48.7			47.5	
Approach LOS		E			E			D			D	

Intersection Summary			
HCM 2000 Control Delay	53.4	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.94		28.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	F
Intersection Capacity Utilization	96.7%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

Appendix C: AUTOTURN EVALUATION

Prepared by:

AtkinsRéalis

Phil Shad, AICP, PTP
8375 Dix Ellis Trail, Suite 102
Jacksonville, FL 32256
904.363 .8473
phil.shad@atkinsglobal.com

